
LEROY STOREY, PRESIDENT 214A COUNTRY CLUB APTS. 323-1082

DICK FRENCH, VICE PRESIDENT 6558 MOON CIRCLE 561-2830

RUTH WEBB, TREASURER P. 0. BOX 4008 327-6820

MAY MEETING:

THURSDAY, MAY 14, 1981 AT HAROLD BUCK'S HANGAR 5-G, COLUMBUS METRO AIRPORT, 7:30 P.M. PROGRAM: CHRIS HEINTZ, AERONAUTICAL ENGINEER AND DESIGNER OF ZENAIR LINE OF HOMEBUILT AIRCRAFT WILL PRESENT FORUM ON ZENITH 250 BUILT BY BILL MILLER OF GAINESVILLE. IN THE EVENT OF BAD WEATHER, PREVENTING ARRIVAL OF THE PLANE, OUR MEETING WILL BE HELD AT FIRST FEDERAL SAVINGS & LOAN, BEALLWOOD CONNECTOR.

PREZ SEZ:

I ANNOUNCED AT FEBRUARY MEETING A PLAN TO CHARTER A BUS TO OSHKOSH '81. SO FAR, 9 OF YOU HAVE PUT UP A \$25 REFUNDABLE SEAT DEPOSIT, INCLUDING 3 COUPLES. ON APRIL 18, AFTER SEEING JERE ROSSER AND TWEETY BIRD TAKE OFF FROM HIS STIMULATING EXPOSITION WITH US, I WENT TO GREYHOUND AND GOT IT IN WRITING. WITH A \$100 REFUNDABLE DEPOSIT I HAVE RESERVED A 43-SEAT BUS FOR AUGUST 1 - 8, AND HAVE FROZEN THE COST. THE GOAL IS TO GET 43 PEOPLE TO SHARE THAT COST SO OUR FARE WILL BE \$86.40 ROUNDTRIP, WHICH IS LESS THAN HALF THE TICKET-WINDOW FARE ON SCHEDULED BUSES. AN INFO LETTER INVITING PARTICIPATION WILL SOON BE SENT TO ALL FAAers, THEN TO 35 AREA CHAPTERS (PASSENGERS MAY BOARD FROM HERE TO NASHVILLE). THE LETTER WAS INTERRUPTED BY MY RECENT 5-WEEK MOTOR TRIP TO SEATTLE VIA N. DAKOTA, RESULTING FROM A FAMILY BIRTH AND DEATH. A NOTICE ABOUT THE CHARTER HAS ALREADY APPEARED IN THE APRIL ISSUE OF EAA HQS. CHAPTER BULLETIN. WILL YOU HELP US PUBLICIZE THIS IF YOU GET A CHANCE?....LATER THIS MONTH I'LL BE SCHEDULING A BUSINESS MEETING OF CHAPTER OFFICERS AND APPOINTEES TO INITIATE AND FORMULATE SOME CHANGES AND IMPROVEMENTS. MEANWHILE, WILL YOU PLEASE HELP BY TELLING ONE OF US WHAT IT IS THAT YOU WOULD LIKE TO SEE DONE OR CHANGED, AND HOW? WE'RE NOT OUT OF IDEAS, BUT WE WELCOME YOURS AND HERE'S YOUR CHANCE TO DO SOME CONSTRUCTIVE CRITICISM. THANKS, COMRADES.

CONGRATULATIONS TO VERNON PRATER. HE IS NOT ALWAYS AN EASY MAN TO REACH, BUT RUMOR HAS IT THAT HIS FLIGHT MEDICAL CERTIFICATE HAS BEEN REINSTATED, AT LEAST FOR A 6-MONTH TRIAL PERIOD. VERNON HAD TRIED UNSUCCESSFULLY SEVERAL TIMES TO GET THIS ACTION FROM THE FAA MEDICAL HIERARCHY. TOWARD THE LAST, HE AND HIS LAWYER HAD SCHEDULED A HEARING BEFORE THE NTSB (THE FINAL AUTHORITY SHORT OF SUPREME COURT), BUT THE FAA HAD SAID, "LET US KNOW BEFORE YOU GO BEFORE NTSB." APPARENTLY HE BID...AND FAA DID...WHAT HE WANTED. OBJECT LESSON: PERSISTENCE SOMETIMES PAYS OFF IN THESE MATTERS.

JIM CANNINGTON UNDERWENT A HASTILY-SCHEDULED APPENDECTOMY FRIDAY, THE 1st, AT DOCTORS HOSPITAL--AND NONE TOO SOON FOR IT WAS ABOUT TO BURST (THE APPENDIX THAT IS). ON THE FOLLOWING MONDAY MORNING HE WAS LOOKING GOOD BUT WAS ON THE HORNS OF DILEMMA. HE DIDN'T KNOW WHETHER TO STIFLE THE COUGH FROM HIS WEEK-OLD COLD, OR DO IT AND SUFFER IN THE INCISION AREA. HE EXPRESSED AN INTEREST IN DISPOSING OF HIS THORPE T-18 PROJECT AND ACQUIRING A POLLIWAGON KIT. ANYBODY INTERESTED? IT'S ONE OF THE T-18'S FROM THE LOCKHEED-MARIETTA GROUP WHO STARTED A MASS PRODUCTION EFFORT SOME YEARS AGO.

IT APPEARS THAT WE WILL HAVE A REGULAR MEETING IN JUNE AT FIRST FEDERAL S&L, WHITESVILLE ROAD.

Be kind. Remember everyone you meet is fighting a hard battle.

T. H. THOMPSON

cant best suited to the material. The following list will assure the best results: is necessary for a quick job on thin material, deep drilling calls for the lubrivent overheating the bit. While a simple shot of light oil is usually all that Drilling Metal. A lubricant is usually required when drilling metal to pre-

Material	Lubricant
Hard, tough steels	Turpentine or kerosene
Softer steels	Lard oil or similar oil
Aluminum, other soft alloys	Kerosene
Brass	Dry or paraffin oil
Die castings	Dry or kerosene
Cast iron	Dry (no lubricant)

and speed should be matched as closely as possible, according to the following chart: Whatever material is being drilled, the drill-bit diameter, the material

	R.P.M. and	Material					-
Drill Diam.	Soft Metals	Plastics Hard Rubber	Annealed Cast Iron	Steel	Malleable	Hard Cast	Tool o Hard Steel
14,6	18320	12217	8554	6111	5500	4889	366
3/32	12212	8142	5702	4071	3666	3528	244
1/8	9160	6112	4278	3056	2750	2445	183
5/32	7328	4888	3420	2444	2198	1954	146
3/16	6106	4075	2852	2037	1833	1630	122
7/32	5234	3490	2444	§745	1575	1396	104
1 / ₄	4575	3055	2139	1527	1375	1222	91
9/ ₃₂	.4071	2712	1900	1356	1222	1084	814
5/16	3660	2445	. 1711	1222	1100	978	73
11/32	3330	2220	1554	1110	1000	888	66
3/8	3050	2037	1426	1018	917	815	61
13/32	2818	1878	1316	939	846	752	56
7/10	2614	1746	1222	873	786	869	52
15/32	2442	1628	1140	814	732	652	48
1/2	2287	1528	1070	764	688	611	45
9/16	2035	1357	950	678	611	543	40
5%	1830	1222	856	611	550	489	36
97/1	1665	1110	777	555	500	444	33
. %	1525	1018	713	509	458	407	2

of the materials listed: Soft metals, 300 f.p.m.; plastics and hard rubber, 200

r.p.m. for any size bit, here are the recommended speeds in feet per minute

90 f.p.m.; hard cast iron, 80 f.p.m.; tool or hard steel, 60 f.p.m.; alloy steel or

cast steel, 40 f.p.m.

f.p.m.; annealed cast iron, 140 f.p.m.; mild steel, 100 f.p.m.; malleable iron,

of feet per minute that the perimeter of the bit is traveling. To figure the

use the speed nearest to the one given. The speeds are based on the number

speed. As all the speeds listed are not necessarily obtainable on all drill presses

The figures given are for high-speed drill bits. For carbon bits use half the

	Size of		Size of	10	Size of	32	Size of
Let- ter	Drill in Inches						
Α	0.234	н	0.266	0	0.316	U	0.368
В	0.238	1	0.272	P	0.323	٧	0.377
C	0.242	J	0.277	Q	0.332	W	0.386
D	0.246	K	0.281	R	0.339	Х	0.397
Ε	0.250	L	0.290	S	0.348	Υ	0.404
F	0.257	M	0.295	T	0.358	Z	0.413
G	0.261	N	0.302	1			

DECI	MAL EC	AVIU	LENTS	OF N	UMBER	SIZE	DRILLS
No.	Size of Drill in Inches						
1	.2280	21	.1590	41	.0960	61	.0390
2	.2210	22	.1570	42	.0935	62	.0380
2	.2130	23	.1540	43	.0890	63	.0370
4	.2090	24	.1520	44	.0860	64	.0360
5	.2055	25	.1490	45	.0820	65	.0350
6	.2040	26	.1470	46	.0810	66	.0330
7	.2010	27	.1440	47	.0785	67	.0320
8	.1990	28	.1405	48	.0760	68	.0310
9	.1960	29	.1360	49	.0730	69	.0292
10	.1935	30	.1285	50	.0700	70	.0280
11	.1910	31	.1200	51	.0670	71	.0260
12	.1890	32	.1160	52	.0635	72	.0250
13	.1850	33	.1130	53	.0595	73	.0240
14	.1820	34	.1110	54	.0550	74	.0225
15	.1800	35	.1100	55	.0520	75	.0210
16	.1770	36	.1065	56	.0465	76	.0200
17	.1730	37	.1040	57	.0430	77	.0180
18	.1695	38	.1015	58	.0420	78	.0160
19	.1660	39	.0995	59	.0410	79	.0145
20	1610	40	0980	60	0400	80	.0135

DECIMAL	EQUIVALENT	S OF PARTS OF	AN INCH
164 0.015625 0.03125 0.046875 0.06875 0.078125 0.09375 1.09375 1.109375 1.109375 1.140625 1.1406	17 265625 28125 28125 28125 28125 296875 3125 328125 328125 328125 328125 328125 359375 35	332 35	10

AMERICA	N S	TANE	DARD	AND	M	ETRIC 1	'AP	DRILL	SIZES
				Nea	rest			Fractions	1
Tap		Drill	Dec.	Fract	ional	Тар		Drill	Dec.
Size	Std.	Size	Equiv	. Drill	Size	Size	Std.	Size	Equiv.
4 x 40	NC	No. 43	.0890	3/	32	7/16 x 20	NF	25/64	.3906
6 x 32	NC	No. 36			64	7/16 x 14	NC	3/8	.3750
8 x 32	NC	No. 29	.1360	9/	64	1/2 x 13	NC	27/64	.4219
10 x 32	NF	No. 21	.1590		32	1/2 x 20		29/64	.4531
10 x 24	NC	No. 25	.149	5 5/	32	9/16 x 12		31/64	.4844
12 x 24	NC	No. 16				9/16 x 18		33/64	.5156
1/4 x 20	NC	No. 7	.2010			5/8 x 11	NC	17/32	.5312
1/4 × 28	NF	No. 3	.2130		32	5/8 x 18		37/64	.5781
5/16 x 18	NC	17/64				11/16 x 11	NC	19/32	.5937
5/16 x 24	NF	17/64				11/16 x 16		5/8	.6250
3/8 x 24	NF	21/64				3/4 × 10		21/32	.6562
3/8 x 16	NC	5/16			16	3/4 x 16	NF	11/16	.6875
1/8 Pipe		5/16	.312	5 5/	16	1/4 Pipe	STE STEELS WEST	7/16	.437
Tap	0	rill	Dec. N	learest		Тар	Drill		Neares
Size	5	ize E	Equiv. F	raction		Size	Size	Equiv.	Fraction
3mm x .50m	m No	. 39	.0995	3/32	8mr	n x 1.25mm	17/6	4 .265	17/64
3mm x .60m			.0937	3/32	9mr	n x 1.00mm	5/10	6 .3125	5/16
4mm x .70m			.1285	1/8		n x 1.25mm	5/16		
4mm x .75m			125	1/8		n x 1.25mm	11/3	2 .3437	11/32
5mm x .80m			.166	11/64		n x 1.50mm	K.,	.339	11/32
5mm x .90m			.161	5/32	11mr	n x 1.50mm	3/8	.375	3/8
6mm x 1.00m			.196	13/64		n x 1.50mm	13/3		13/32
7mm x 1.00m			.234	15/64		n x 1.75mm	13/3		13/32
8mm x 1.00m	m '		.277	9/32	17	/8-28BSP	21/6	4 .3281	21/64